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Abstract

BoRiS is a 3D scrape-off layer (SOL) transport code under development which is to solve a system of plasma fluid
equations. BoRiS is currently extended towards a physics model including continuity, parallel momentum and energy
equations for both electrons and ions. In addition the code requires the implementation of adequate solvers and the
generation of high precision metric coefficients throughout the entire computational domain. © 2001 Published by

Elsevier Science B.V.
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1. Introduction

BoRiS is a new 3D scrape-off layer (SOL) transport
code aimed at solving a system of plasma fluid equations
like the well-known B2 code. In order to deal with the
complex 3D geometry of W7-X, BoRiS uses magnetic
coordinates, thus allowing for standard discretization
methods with higher order schemes retaining full geo-
metric flexibility. Serving as a test bed for the overall
layout of BoRiS a system of two coupled anisotropic
Laplace equations for the electron and ion temperature
was implemented in a first step. Fig. 1 shows one period
of a W7-X plasma in real space with the colours indi-
cating the electron temperature profiles on the outer-
most flux surfaces of the magnetic island flux tubes.
Subsequently the actual physics model of BoRiS has
been extended by including equations for both the par-
allel velocity and the plasma density. Parallel to this
work numerical aspects like the implementation of more
sophisticated solvers, problems arising from grid gen-
eration and the generation of high precision metric in-
formation are covered as well.
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2. Model equations

Having started with a system of simplified energy
equations [1,2] for the electrons and ions consisting of
two anisotropic Laplace equations being coupled by a
heat exchange term, the actual physics model of BoRiS
is currently completed by including the equations for the
parallel momentum and the plasma density, leading to
the following system:
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where a stands for electrons e and ions i with sgn e=
—sgn i=—1. Here we have the ion density n; = n, = n/2,
the parallel velocity wu; (with @ =i+, =
i) — D, v 1n;/n;), the temperatures 7,, the parallel and
perpendicular conductivities «ff and «9, an anomalous
diffusivity D, the heat exchange term Q,; and a source
term S,,. Although the above equations correspond to
the stationary case, artificial time dependencies are taken
into account for numerical stability reasons.
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Fig. 1. Island flux tubes with electron temperature profiles in real space.
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Fig. 2. Density profile (left) and metric coefficient /g (right).

3. Continuity equation tests

In implementing the new equations, we performed
several tests in different geometries. A simple slab model
can be used to test basic properties and different con-
tributions. On the other hand, the equations can also be
solved serving as a diagnostic tool for the specifics of the
actual 3D geometry.

As an example, the continuity equation was solved in
a W7-X geometry assuming the absence of sources and a
spatially constant test-velocity field # = (uy,u1,u15).

Using different components of the test-velocity, the
metric properties of the computational domain were
probed, thus yielding a fingerprint of the geometry.

Fig. 2 shows the density profile n(s = const) as ob-
tained with a velocity field ii = (#,0,0) in comparison
to the metric coefficient /g which acts as a weight factor
on the interfaces between computational cells. Since # is
parallel to the magnetic field there is only a 1D variation
along the toroidal coordinate ¢.

Fig. 3 compares two results for the density (upper
and lower) to the metric coefficient g* (middle). The
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upper case corresponds to ii = (u,0,u,,) and shows the
same characteristic pattern as g* together with a toroi-
dal background variation that can be related to the ac-
tion of /g according to Fig. 2. This test-velocity is 2D as
it lies completely within a magnetic flux surface and
therefore does not yield a radial variation of the density
profiles. Such variation of the density as it is predicted
by g* can only be detected if a velocity component along
the s direction is introduced as was done in the lower
case where i = (0,u,,0). Again, the characteristic pat-
tern due to g* and a toroidal variation can be seen.

4. Interpolation of scattered 3D data

As already outlined earlier [2], BoRiS utilizes a
physically motivated scheme of interpolation which
yields the value f, of a function and its partial deriva-
tives at 7, as weighted averages from neighbour grid
point values f;

1 & N
f*:W;Wi - W:;wi. (3)

The weight factors w; are

)
wi = y(P)exp (= 17— 7.P/2), 4)
where /, denotes a local grid constant which acts as a
local ‘screening length’ for the properties of surrounding
grid points determining the value at 7,. The partial de-
rivatives of f'with respect to the elementary directions é;
are
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Here the weight factors w/ are

w] = wy cos? e, (6)

with o, being the angle between 7, and €;. The factor y
in (4) provides a possible upwind correction [3] to the
individual weight w; due to the presence of a carrier field
in a general convection-diffusion situation

VP = (M= 1)/ 1. ()

This factor appears as though the interface position 7,
was central to the surrounding grid points 7. In this
approach spatial asymmetries are taken care of by the
second factor in (4). The dimensionless number P, is the
projection of the local Péclet number which measures
convection versus diffusion strength for each equation
individually. Using more or less simple approximations

to the function (7) different schemes of interpolation are
available (e.g. upwind, hybrid, power law [3]).

5. Numerical issues

To solve the above system of nonlinear equations (1)
with a Newton method the implementation of sophisti-
cated solvers is crucial to the spatial resolution available.
BoRiS is designed to utilize several solvers based on
different methods [4]:

(1) sparse direct solver — MA28 [5];

(it) sparse iterative solver — BiCGSTAB or

GMRES(m) with left and right preconditioning

(Jacobi, SGS, SOR, SSOR, ILU(0), ILUT(p, 1));

(iii) matrix-free iterative solver — BiCGSTAB or

GMRES(m) with Jacobi preconditioning.
Currently the best results are obtained with sparse iter-
ative solvers and an ILU(0) preconditioning. However,
this method is still rather time-consuming and memory-
expensive and will be replaced by an adequate matrix-
free solver. The memory requirements for the different
solvers can be compared as

direct solver
— ~ 300
iterative solver

and

iterative solver N
matrix-free solver

In addition to appropriate solvers, local grid refine-
ment offers a maximum of spatial resolution where it is
necessary while minimizing the numerical effort for
solving the problem. In a future version BoRiS will use
an adaptive apparatus for grid generation and refine-
ment. At the present stage, first tests were performed
resolving a pre-defined region of the computational
domain to a higher degree than its surroundings,
showing satisfactory results.

6. Magnetic coordinates

Lastly, the solution of the 3D transport equations in
magnetic coordinates requires good knowledge of the
spatially-varying metric coefficients, in particular near
the island chain boundary in the W7-X edge that BoRiS
must resolve. The current MHD codes do not appro-
priately treat such separatrix regions when computing
metric coefficients, thus we have developed a new
method for their evaluation. This method assumes only
the existence of magnetic surfaces (so zero ergodicity)
and knowledge of the magnetic field (and its derivatives)
in the region of interest. We first identify the X- and
O-points of the field by finding where the field lines close
upon themselves after only one toroidal turn. Then, for
each topological region (plasma core, islands, SOL), we
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Fig. 3. Density profiles (upper and lower) and metric coefficient g* (middle).
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follow field lines long enough to describe the magnetic
surfaces to the desired accuracy (i.e., a few hundred
toroidal turns). On these surfaces, we can now compute
the rotational transform 1, the toroidal flux Fr, and the
poloidal and toroidal currents 7 and J. To proceed fur-
ther, we make use of an algorithm developed by Nemov
[6] which allows one to recast magnetic differential
equations of the form B - Vf = 0 as initial value prob-
lems necessitating only integration along the field lines.
By so doing, we can obtain numerical expressions for the
Clebsch components of the field Vi and V(0 —i{) in
each plasma region. The metric coefficients are then
trivially obtained. The determination of the Nemov
initial conditions requires the radial derivative 0Fr/OR,
which is the only radial derivative appearing. Moreover,
all integrations are done along field lines, allowing this

method to provide the desired numerical accuracy for
our purposes.
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